Infection of cattle with Border disease virus by sheep on communal alpine pastures

U. Braun¹, C. Bachofen², R. Büchi¹, M. Hässig¹, E. Peterhans²

¹Department of Farm Animals, University of Zurich, ²Institute of Veterinary Virology, University of Berne

Summary

The purpose of this study was to investigate whether sheep grazing communal alpine pastures with cattle can transmit Border disease virus (BDV) to cattle. A total of 1170 sheep and 923 cattle were tested for BDV using RT-PCR (sheep) and for pestivirus antibodies using an ELISA (cattle), respectively, before being moved to one of 4 pastures (A, B, C and D). Eight sheep from pasture C were viraemic. 396 of 923 cattle examined before the pasture season were seronegative. The latter were re-examined after the pasture season and 99 were seropositive or indeterminate. Antibody specificity was determined in 25 of these using a serum neutralization test (SNT). BDV infection was confirmed in 10 cattle and was considered likely in 8 others. BVDV infection was confirmed in 4 cattle and considered likely in 3 after pasturing. The study has shown that the transmission of BDV from sheep to cattle is possible on communal alpine pastures.

Keywords: sheep, cattle, communal alpine pasture, border disease, bovine viral diarrhoea

Introduction

Pestiviruses occur in many ruminant populations throughout the world. Bovine viral diarrhoea virus (BVD virus, BVDV) affects cattle and Border disease (BD virus, BDV) principally affects sheep. Pestiviruses have the ability of interspecies transmissibility. Recent studies (Krametter-Fröscher et al., 2008; Reichle, 2009; Büchi, 2009) have indicated that BDV can be transmitted from persistently infected sheep to cattle that are co-pastured with sheep. The first report (Cranwell et al., 2007) of cattle infected with BDV was from Great Britain and involved three animals. The first was a 13-month old heifer with diarrhoea and weight loss, the second was a 2.5-year old...
cow with diarrhoea and other signs of mucosal disease and the third was a small weak newborn calf that died soon after birth. Another recent report (Strong et al., 2010) of 5 cattle infected with BDV was also from Great Britain. Research on the eradication of BVD in Switzerland carried out at the Institute of Veterinary Virology, University of Berne, found several calves persistently infected with BDV. These calves tested positive for pestiviruses in ear punch biopsy samples and subsequently in blood samples and sequencing confirmed persistent infection with BDV, rather than BVDV. Taken together these reports suggest that the presumed natural resistance of cattle against BDV no longer holds true (Strong et al., 2010). Because the seroprevalence of BDV infection of sheep in Switzerland is considerable (20% in registered flocks and 65% in large mixed flocks; Schaller et al., 2000), the occurrence of persistently-infected sheep and ongoing transmission of the virus to other sheep must be assumed. Furthermore, it is very likely that in Switzerland sheep will be an important source of pestiviruses for cattle that are pastured or housed with sheep. This is because the program for eradication of BDV, which was started in 2008, will soon be completed. It is suspected that analogous to the spread of BVDV among cattle (Braun et al., 1998) and BDV among sheep and goats (Krametter-Fröscher et al., 2007), communal alpine pasturing plays a role in the transmission of BDV from sheep to cattle. Thus, in addition to generating scientific interest, the transmission of pestiviruses from sheep to cattle has considerable practical relevance. The goal of the present study was to investigate whether BDV is transmitted from sheep to cattle under natural conditions during communal alpine pasturing, and whether infection of seronegative cattle leads to seroconversion during the pasture period.

Animals, Material and Methods

Communal alpine pastures

The study included 4 alpine pastures (A, B, C, D) in the cantons Schwyz, Uri and Obwalden used during the summer of 2008 (Tab. 1). The pastures were 1000 to 2300 m above sea level and varied from 200 to 800 ha (mean, 400 ha). All 4 alpine pastures were grazed by cattle and sheep for 86 to 104 days (mean, 94 days) during the summer.

Sheep

There was a total of 1170 sheep of all ages from 29 private flocks on the 4 pastures. The number of sheep per flock ranged from 7 to 300 sheep (mean, 40.3 sheep) and most were "Weisses Alpenschaf" sheep.

Cattle

There was a total of 923 cattle between 5 months and 13.8 years old (mean ± sd = 29.1 ± 21.18 months) from 94 herds. The majority (n = 825, 89.4%) were Swiss Braunvieh and the remaining 98 included utility crossbreeds (n = 23), Simmental (n = 23), Limousin (n = 14) and others (n = 18). All tested negative for pestivirus antigen under the ongoing BVD eradication program.

Blood testing of sheep

In all sheep, 6 ml blood was collected from a jugular vein into an evacuated EDTA tube (Vacuette, Greiner Bio-One GmbH, A-Kremsmünster) to test for Border disease antigen before communal pasturing.

Blood testing of cattle

In all cattle, a blood sample was collected from the coccygeal vessels for determination of antibody titre to pestivirus before communal pasturing. From 380 animals that were seronegative, a second blood sample was collected at the end of pasturing to test for seroconversion. Sixteen animals that were seronegative in the first test could not be re-tested because they died or were slaughtered or sold.

Detection of viral RNA in the blood of sheep

This test was carried out at the Institute of Veterinary Virology, University of Berne, using quantitative RT-PCR as recently described (Büchi, 2009).
ELISA and serum neutralisation

Serological testing using ELISA was carried out at the same laboratory (Büchi, 2009). Cattle with a negative ELISA result in the first sample that had a positive or indeterminate result in the second sample underwent a serum neutralisation test (SNT) (Büchi, 2009) to identify the pestivirus for which the animal had seroconverted. Because of genetic similarities between BVDV and BDV, some degree of cross-neutralisation is expected. A BDV titre that was at least twice as high as the BVDV titre confirmed BDV infection, and a titre that was higher than but not twice as high as the BVDV titre indicated a likely BDV infection. The assessment of BVDV titres was analogous.

Statistical analysis

The program StatView 5.1 (SAS Institute, Wangen, Switzerland) was used for statistical evaluation. The means, standard deviations and frequency distributions were calculated for the variables studied and differences were analysed using analysis of variance (ANOVA) and the Bonferroni-Dunn post hoc test. The Wilk Shapiro test was used to test distributions for normality. Results of normally distributed variables are given as mean ± standard deviation and results of variables with a skewed distribution as median and range. The level of significance was set at P < 0.05.

Results

Virus prevalence in sheep

Border disease virus was detected in 8 of 1170 (0.68 %) clinically healthy sheep; 5 had a very high viral load and 3 had a weak positive result. These 8 sheep originated from 2 flocks and all were on pasture C (Tab. 2). The flock prevalence on pasture C was 6.9 %. The other 3 communal pastures were free of BDV-positive sheep. In the 5 sheep with a high viral load, the virus was characterized using sequencing; four viruses belonged to the Swiss BDV subgroup (Reichert, 2009; Peterhans et al., 2010) and the remaining case was BD-3-virus.

Seroprevalence of cattle before pasturing

Of the 923 cattle tested using ELISA, 396 (42.9 %) were seronegative and 527 (57.1 %) were seropositive. The seroprevalence varied from 45.1 to 74.7 % among the four pastures (D 45.1 %, C 56.8 %, A 59.4 %, B 74.7 %).

Seroprevalence of cattle after pasturing

Of the 380 cattle that underwent a second ELISA after pasturing (16 animals were not available for re-testing), 52 had a positive and 47 had an indeterminate result. Of these 99 animals with confirmed or likely seroconversion, 70 were from pasture C, where the BDV-positive sheep were diagnosed. Of the remaining 29 animals, 20, 6 and 3 were from pastures D, A and B, respectively.

Serum neutralisation testing of the 99 samples from cattle with confirmed or likely seroconversion revealed 47 samples in which the antibody could not be differentiated because the BVDV and BDV titres were similar, and 27 samples that were negative (Tab. 3). Differentiation of the antibody was possible in the remaining 25 samples. In 10 samples the BDV titre was at least twice as high as the BVD titre, confirming BDV infection. In 8 samples, the BDV titre was clearly higher than, but not double, the BVD titre and BDV infection was considered likely. In 4 samples the BVDV titre was at least twice as high as the BDV titre, confirming BVDV infection, and in the remaining 3 samples, the BVDV titre was clearly higher than, but not double, the BDV titre and BVDV infection was considered likely. Of the 18 cattle with confirmed or likely BDV infection, 13 were from pasture C and 5 from pasture D.

Table 2: Assessment of 1170 sheep for the presence of border disease virus in blood using RT-PCR.

<table>
<thead>
<tr>
<th>Pasture</th>
<th>No of sheep:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viremic/total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0/126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0/70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8/671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0/303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BDV subgroup (Reichert, 2009; Peterhans et al., 2010) and the remaining case was BD-3-virus.

Table 3: Assessment of 99 positive or indeterminate serum neutralisation test results (cattle).

<table>
<thead>
<tr>
<th>Communal pasture</th>
<th>Antibody not differentiated</th>
<th>SNT negative</th>
<th>BDV infection confirmed</th>
<th>BDV infection likely</th>
<th>BVDV infection confirmed</th>
<th>BVDV infection likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>36</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

SNT: Serum neutralisation test
BDV: Border disease virus
BVDV: Bovine viral diarrhoea virus
pasture D. Of the cattle that acquired BVDV infection, 4 were from pasture C and 3 from pasture D.

Discussion

Border disease virus was detected in blood of eight of 1170 (0.68%) sheep. Five had a high viral load and 3 had a low load; a persistent infection was assumed in the former, but this could not be confirmed because a second blood sample was not collected. The 3 sheep with a low viral load were considered transiently infected, most likely following contact with the persistently-infected sheep. These 8 sheep originated from 2 large commercial flocks, which had had no abortions or births of weak lambs in the past few years. It is noteworthy that the virus-positive sheep were clinically healthy, which was in agreement with several reports of healthy persistently-infected lambs (Barlow et al., 1980; Bonniwell et al., 1987; Nettleton et al., 1992). Likewise, a study of Swiss sheep flocks showed that the majority of BVDV infections are subclinical or infected lambs only have mild clinical signs that may go unnoticed. Under such circumstances, a strong economic incentive for a thorough diagnostic workup may be lacking and therefore additional testing is not usually undertaken (Braun et al., 2002). There is little awareness of BD among sheep farmers in Switzerland, although the endemic occurrence of this disease has long been documented (Schaller et al., 2000). Spanish studies reported similar BVD prevalences of 0.3 to 0.6% (Valdazo-González et al., 2006, 2008) and one of these, a slaughterhouse study, revealed that the prevalence of BVD in individual sheep remained unchanged for several years (Valdazo-González et al., 2008). Five of 21 randomly tested Spanish flocks had BVDV-positive sheep, yielding a flock prevalence of 23.8% (Valdazo-González et al., 2006), which was considerably larger than in the present study (2 of 29 flock, 6.9%). Most sheep of the present study were from breeding farms, which typically have a lower virus prevalence than commercial flocks because of less animal traffic (Schaller et al., 2002).

The seroprevalence of BVDV in cattle before pasturing was 57.1%, which was comparable to the value of 57.6% previously observed in Swiss cattle (Rüfenacht et al., 2000); the BVD eradication program, which was started in the same year the present study was carried out, evidently had not yet affected the seroprevalence. Because of the relatively high seroprevalence, only 43% of cattle could be used to investigate seroconversion, which had occurred in 25% (99) of the 396 examined cattle. Because of the BVD eradication program, it is projected that the proportion of seropositive cows will approach zero. The risk of seroconversion to pestivirus will therefore increase because the proportion of seronegative cattle will increase, at least theoretically, to 100%. The relatively large proportion of negative serum neutralisation test results was most likely due to the inclusion of samples with indeterminate ELISA results. Because a BVDV ELISA was used in the present study, its sensitivity for BDV was expected to be somewhat reduced. Indeterminate ELISA results can also be caused by non-specific serum reactions, which generate negative serum neutralisation test results. Based on high titres in the serum neutralisation test, BDV infection was confirmed in 10 cattle and considered likely in 8 others, and the majority of these were from pasture C where the BVDV-positive sheep were the most plausible source of infection. Five others were from pasture D, which did not have any BDV-positive sheep, and reasons for seroconversion in cattle included false-negative test results in sheep, transiently viraeemic sheep, premature parturition, normal delivery or abortion of persistently-infected lambs and subsequent infection of cattle, infection immediately before the start of co-pasturing and infection from wild ruminants. Wild ruminants were seen on all 4 pastures and contact between the two species was possible. However, the role of wild ruminants in the infection of cattle, sheep and goats remains unclear (Krammetter et al., 2004; Vlček and Nettleton, 2006; Danuser et al., 2009) and despite high seroprevalences reported from a variety of countries (Lillehaug et al., 2003; Olde Riekerink et al., 2005), transmission of pestivirus to domesticated cattle has not been documented (Vlček and Nettleton, 2006). Indirect infection via vectors or fomites are theoretically possible but difficult to substantiate (Houe, 1995).

The infection of 7 cattle with BVDV in the absence of any BVDV-positive cattle at the start of the season is noteworthy. Possible reasons for this are generally the same as those used to explain the infection of cattle with BDV on pasture D where there were no known carrier sheep. Because of the BVD eradication program, there should be very few BVDV-infected cows in the future. Whether BDV infection of cattle is clinically relevant and can produce persistently-infected calves needs further study, but recent reports of persistently-infected calves from England (Cranwell et al., 2007) and Switzerland (personal communication, Institute of Veterinary Virology, University of Berne) suggest that it can. The relationship between BVDV infection of cattle and BDV infection of sheep is reminiscent of the relationship between caprine arthritis-encephalitis (CAE) of goats and Maedi Visna in sheep; CAE virus can be transmitted to sheep, and Maedi-Visna virus of sheep, which is closely related to the CAE-virus, can be transmitted to goats. These relationships complicate serological disease surveillance (Mordasini et al., 2006).

Conclusions

This study has clearly shown that sheep grazing communal alpine pastures with cattle must be considered a risk factor for the transmission of BDV to the latter, at
least under Swiss farming conditions. There is no doubt that cattle seropositive for BDV will complicate the BVD eradication program; plans are in place for confirming seronegativity of cattle herds to BVD using milk or blood samples starting as early as 2012. The ELISA test for BVD will be positive in BDV-infected cattle, which will necessitate retesting using a serum neutralisation test.

Acknowledgements

We thank Dr. Josef Risi, cantonal veterinarian of Uri, Schwyz, Obwalden and Unterwalden, for his support, the farmers for their help with sample collection and the staff of the Institute of Veterinary Virology, University of Berne, for laboratory examinations.

References

Corresponding author

Ueli Braun
Departement für Nutztiere
Winterntherustrasse 260
8057 Zürich
Fax: +41 (0)44 635 89 04
ubraun@vetclinics.uzh.ch

Received: 5 January 2012
Accepted: 22 February 2012