Species identification of non-tuberculous mycobacteria from humans and cattle of Chad

C. Diguimbaye-Djaibé¹, V. Vincent², E. Schelling³, M. Hilty³*, R. Ngandolo¹, H. H. Mahamat¹, G. Pfyffer⁴, F. Baggi⁵, M. Tanner³, J. Zinsstag³

¹Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha, N’Djaména, Chad, ²Centre de Référence de Mycobactéries, Institut Pasteur, Paris, France and ³Swiss Tropical Institute, Basel, ⁴Department of Medical Microbiology, Kantonsspital Luzern, Luzern, ⁵National Center for Mycobacteria, University of Zurich, Switzerland

Summary

In Chad, during a study on tuberculosis in humans and cattle, 52 non-tuberculous mycobacteria (NTM) strains were isolated. By means of INNO-LiPA, PRA-hsp65 amplification and sequencing of 16S rDNA, NTM species of 25/52 isolates were identified. *M. fortuitum* complex (8) was the most frequent species, followed by *M. nonchromogenicum* (4) and *M. avium* complex (4). PRA method could identify *M. fortuitum* 3rd variant among isolates derived from cattle specimens. This finding could confirm the existence of farcy in the Chadian cattle population as *M. fortuitum* 3rd variant and putative pathogen *M. farcinogenes* can’t be distinguished by the methods used in this study. Half of the NTM isolates could not be specified and we considered them as contaminants from the environment.

Keywords: non-tuberculous mycobacteria, Chad, molecular methods, INNO-LiPA assay, PRA amplification, sequencing of the 16S gene

Introduction

With the increase in human tuberculosis cases and the advent of HIV/AIDS, there has been resurgence in interest in diseases caused by non-tuberculous mycobacteria (NTM). NTM are subdivided into rapid and slow growers. Their ecologic niche is the environment, as they have been found in soil, plants, house dust and water. In contrast, animals are not considered as an important reservoir for NTM (Saiman, 2004). However, they can cause infections in humans and animals (Phillips and von Reyn, 2001; Hamid et al., 1991; Alander-Damsten et al., 2003; Valheim et al., 2001). Mycobacteria cause a variety of illnesses, which have profound individual and public health implications. The clinical symptomatology of these diseases is not different from classical tuberculosis (Dvorska et al., 2001), but their therapy is problematic due to the high resistance to antituberculous drugs seen for most ubiquitous mycobacteria (Schutter-Gerowitt, 1995). Reports on NTM infections in humans and animals in Africa are scarce. Most published studies are from South Africa, and specifically on investigations in the South African gold mines where *Mycobacterium kansasii* and *M. scrofulaceum* were the main causes of mycobacterial diseases (Churchyard et al., 1999; Corbett et al., 1999) and the first case of infection with *M. marinum* since 1987 was reported (Moudicas and Saxe, 1987). For the others part of Africa,
information can be found in studies on AIDS patients. In Burkina Faso, Ledru et al. (1996) found that 6.5% of mycobacterial isolations from AIDS patients were NTM without further specification, and in Nigeria, Idigbe et al. (1994) identified 20% M. avium and 10% M. kansasii among their isolates. In livestock, the serological investigation detected antibodies to M. paratuberculosis in camels and goats in Kenya (Paling et al., 1988). M. fartenogenes was described as main causal agent of bovine farcy in Sudan (Hamid et al., 2002).

In Chad, during a study of two years on tuberculosis in humans and animals, numerous Mycobacterium tuberculosis complex (MTC) and NTM isolates were obtained. The purpose of the present article is to report the different NTM species found among mycobacterial strains from Chad.

Materials and Methods

Isolates and study sites

1) Specimens collected in 5 Chadian health centres (sputum and urine) and in one slaughterhouse (tubercles from lymph nodes, lung, spleen, liver and pleural cavity of condemned cattle’s carcass) in N’Djaména, were subjected to decontamination and cultivation. Obtained mycobacterial isolates were identified by biochemical testing (Kent and Kubica, 1985). On the basis of biochemical tests results, the isolates were categorised in M. tuberculosis complex (MTC) and non-tuberculous mycobacteria (NTM). These preliminary studies were performed at the “Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha (LRVZ/F)” in Chad.

2) Thirty six NTM had been sent to the Institut Pasteur (IP) in Paris for identification NTM species by molecular method.

3) Sixteen NTM strains were characterized at the National Centre of Mycobacteria (NCM) Zurich.

Molecular methods

1) The INNO-LiPA assay was carried out according to manufacturer’s instructions and using the reagents provided with the LiPA kit (Versant® INNO-LiPA HCV II). The protocol consisted of PCR amplification, hybridization of the PCR products to the strips, detection and interpretation of the results (Suffys et al., 2001)

2) PRA amplification was performed according to the procedure described by Telenti et al. (1993). This method amplified a 439-bp fragment of the hsp65 gene.

3) Real-time PCR

DNA extraction and subsequently amplification and identification were carried out according to the procedure described by Kraus et al. (2001). This method allowed the classification of NTM and MTC strains which were all previously categorised as MTC by biochemistry.

4) Sequencing of the 16S gene

The obtained PCR products were used to perform the sequencing of the 16S gene. The sequence processing was done with computer software from ABI PRISM™ 310 (Applied Biosystems). Alignments of mycobacterial 16S rDNA sequences were done with the Model 310 (version 3.4.1.) alignment tool. All probe sequences were subsequently matched with sequences in the GenBank by using BLAST (www.ncbi.nlm.nih.gov/blast/Blast.cgi) to detect sequence similarity. A similarity of 98 to 99% suggests that the obtained sequence likely derives from this species (Turenne et al., 2001).

The search was performed at the National Centre of Mycobacteria in Zurich.

Results

At the LRVZ of N’Djaména, biochemical testing revealed a total of 52 NTM isolates, which were further characterized by three different molecular methods (INNO-LiPA, PRA-hsp65 and 16S (rDNA). We analyzed 36 isolates by INNO-LiPA and PRA-hsp65 at the NTM and 16 isolates by only sequencing of the 16S (rDNA) at the NCM. 25 of 52 isolates resulted in the identification of NTM isolates by at least one of these tools (Tab. 1).

M. fortuitum complex was identified for eight isolates from seven cattle and one human origins and was found the most. Six of them were classified as M. fortuitum supsp. perigrum (with INNO-LiPA) or of which three were further characterized as M. fortuitum 3rd variant by PRA-hsp65. Mycobacterium avium complex was found for four isolates of which one and one of human (626 UR) and cattle origin (502 GG; Tab. 1) respectively, were classified as M. intracellulare. We received also four M. nonchromogenicum of cattle origin of which two and two were classified as subsp. mucogenicum and type I, respectively. The three remaining isolates of cattle origin were identified as Mycobacterium IWGMT.90093, M. smiae and M. Szulgai/ trivialae/brumae. Further human isolates were M. mario-kaense (two), M. celatum (one), M. chelonae, Mycobacterium sp.N120 and also M. smiae (one) (Tab. 1).

Discussion and conclusion

M. fortuitum complex was the most frequent NTM species (8/25) in this study and among them, 3 isolates from cattle were identified as the 3rd variant by PRA.
Table 1: Results of NTM species identification of human and cattle origin from Chad with the three methods INNO-LiPA, PRA-hsp65 and 16S (rRNA) sequencing. NI: not identified. N/D: not done.

<table>
<thead>
<tr>
<th>No of strain</th>
<th>Origin of specimen</th>
<th>INNO-LiPA</th>
<th>PRA-hsp65</th>
<th>16S rDNA (% identity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>407CR/G</td>
<td>human</td>
<td>M. fortuitum subsp. peregrinum</td>
<td>M. peregrinum/M. porcinum</td>
<td>N/D</td>
</tr>
<tr>
<td>219GG</td>
<td>Cattle (Mbororo)</td>
<td>M. fortuitum subsp. peregrinum</td>
<td>M. fortuitum subsp. peregrinum</td>
<td>N/D</td>
</tr>
<tr>
<td>446GG</td>
<td>Cattle (Mbororo)</td>
<td>M. fortuitum subsp. peregrinum</td>
<td>M. fortuitum</td>
<td>N/D</td>
</tr>
<tr>
<td>455GG</td>
<td>Cattle (Mbororo)</td>
<td>M. fortuitum subsp. peregrinum</td>
<td>M. fortuitum 3rd variant</td>
<td>N/D</td>
</tr>
<tr>
<td>454GG</td>
<td>Cattle (Arabe)</td>
<td>M. fortuitum subsp. peregrinum</td>
<td>M. fortuitum 3rd variant</td>
<td>N/D</td>
</tr>
<tr>
<td>483PM/P</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>M. fortuitum (99%)</td>
</tr>
<tr>
<td>490GG/P</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>M. fortuitum (99%)</td>
</tr>
<tr>
<td>582PM</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>M. nonchromogenicum subsp. mucogenicum</td>
</tr>
<tr>
<td>441PM</td>
<td>Cattle (Mbororo)</td>
<td>N/D</td>
<td>N/D</td>
<td>M. nonchromogenicum subsp. mucogenicum</td>
</tr>
<tr>
<td>464FOIE</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>M. nonchromogenicum type I</td>
</tr>
<tr>
<td>663PM</td>
<td>Cattle (Mbororo)</td>
<td>M. avium complex</td>
<td>M. intracellulare/MAI/scrofulaceum</td>
<td>N/D</td>
</tr>
<tr>
<td>502GG</td>
<td>Cattle (Arabe)</td>
<td>M. avium complex</td>
<td>M. intracellulare</td>
<td>N/D</td>
</tr>
<tr>
<td>444GG</td>
<td>Cattle (Arabe)</td>
<td>M. avium complex</td>
<td>–</td>
<td>N/D</td>
</tr>
<tr>
<td>626UR</td>
<td>human</td>
<td>M. intracellulare</td>
<td>M. intracell/MAI/scrofulaceum</td>
<td>N/D</td>
</tr>
<tr>
<td>661GG/G</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>M. simiae (99%)</td>
</tr>
<tr>
<td>277CR/G</td>
<td>human</td>
<td>N/D</td>
<td>N/D</td>
<td>M. simiae (100%)</td>
</tr>
<tr>
<td>280CR/P</td>
<td>human</td>
<td>N/D</td>
<td>N/D</td>
<td>M. moriokaense (99%)</td>
</tr>
<tr>
<td>381UR/P</td>
<td>human</td>
<td>N/D</td>
<td>N/D</td>
<td>M. moriokaense (98%)</td>
</tr>
<tr>
<td>637GG/G</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>Mycobacterium IWGMT.90093 (99%)</td>
</tr>
<tr>
<td>269CR/P</td>
<td>human</td>
<td>N/D</td>
<td>N/D</td>
<td>M. celatum (98%)</td>
</tr>
<tr>
<td>430CR/G</td>
<td>human</td>
<td>N/D</td>
<td>N/D</td>
<td>M. chelonae (99%)</td>
</tr>
<tr>
<td>685CR/P</td>
<td>human</td>
<td>N/D</td>
<td>N/D</td>
<td>Mycobacterium sp.N120 (98%)</td>
</tr>
<tr>
<td>559PM</td>
<td>Cattle (Arabe)</td>
<td>N/D</td>
<td>N/D</td>
<td>Szulgai/trivialé/braunae</td>
</tr>
</tbody>
</table>
Two studies have demonstrated the exact identity of 16S rDNA of *M. senegalense*, *M. farcinogenes* and *M. fortuitum* 3rd variant (Kirschner et al., 1992; Turenne et al., 2001). This finding is interesting because it confirms the existence of bovine farcy in the Chadian cattle population which has not been done since 1963 (Perpézat et al., 1963). However, we can’t draw any conclusion if the responsible pathogen for farcy is *M. farcinogenes* (like in Sudan) or *M. senegalense* (like a case found in Chad), because of the lack of discrimination of the methods used (Hamid et al., 2002).

Only four isolates were identified as *M. avium* complex and none was *M. kansasii*, while usually these two mycobacteria are the most common NTM in clinical specimens and biopsies (Shih et al., 1997; Marras and Daley, 2002; Thorel, 1980; Pate et al., 2004). Concerning the remaining mycobacteria found in our study, they are rarely isolated but most of them were described as potential pathogens. *Mycobacterium simiae* is commonly found in the environment and was rarely associated with human disease. However, some cases of disease caused by *M. simiae* in AIDS and non-AIDS patients have been reported (Vandercam et al., 1996; Huminer et al., 1993; Bell et al., 1983; Lavy and Yoshe-Purer, 1982). *M. celatum* was described as cause of fatal pulmonary infection in an old woman (Bux-Gewehr et al., 1998) and of disseminated infection in domestic ferret (Valheim et al., 2001). *M. chelonae* was frequently isolated from patients with cystic fibrosis (Hjelt et al., 1994; Tomasheski et al., 1996; Fauroux et al., 1997). *M. terrae* complex is composed of *M. nonchromogenicum*, *M. terrae* and *M. triviale*. They are uncommon colonizers of human epithelia and generally regarded as non-pathogenic (Lee et al., 2004). However, *M. nonchromogenicum* may occasionally cause human disease such as pulmonary infection and tenosynovitis (Peters and Morice, 1991).

We obtained many NTM usually found in the environment by sequencing because this method is not focused on pathogen NTM strains. However, we have not confirmed our sequencing results by another molecular method as suggested (Hafner et al. 2004). Generally, NTM isolates should be further characterised because NTM infections can cause disease and first line antituberculosis drug treatment may be not efficacious. In another hand, it will be interesting for veterinarians to know about the importance of NTM in cattle, particularly in interpretation of tuberculin test.

Acknowledgements

We thank the technicians of the “Centre de Reference des Mycobactéries” of Institut Pasteur, the National Center for Mycobacteria, the Swiss Tropical Institute, and the “Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha” who have contributed to the project. The Swiss National Science Foundation is acknowledged for financial support.

Identification d’espèces de mycobactéries non tuberculeuses chez l’homme et le bétail au Tchad

Au Tchad, lors d’une étude de la tuberculose humaine et animale, 52 souches de mycobactéries non tuberculeuses (MNT) ont été isolées. La caractérisation génétique des isolats a été réalisée au moyen des tests INNO-LIPA, PRA-hsp65 et le séquençage du 16 rADN. 25/52 isolats ont pu être identifié. *M. fortuitum* le complexe (8) était l’espèce la plus fréquente, suivie par *M. nonchromogenicum* (4) et *M. avium* le complexe (4). La méthode PRA a pu spécifier *M. fortuitum* variante 3 chez le bétail. Cette découverte peut apporter une preuve supplémentaire sur l’existence du farcín dans le cheptel tchadien, sachant que *M. fortuitum* variante 3 et *M. farcinogenes* ne peuvent pas être distingués par les méthodes utilisées dans cette étude. L’autre moitié des MNT n’ont pas pu être spécifié et nous les avons considéré comme étant des polluants environnementaux.

Identificazione nell’uomo e nel manzo di specie di micobatteri non tubercolari nel Ciad

Durante uno studio in Ciad dove veniva studiata la tuberculosi nell’uomo e nel manzo sono stati isolati 85 micobatteri non tubercolari (NTM). Con l’aiuto del test INNO-LIPA, PRA-hsp65 amplificazione e sequenziamento del 16S rADN, sono stati identificati 25/52 isolati. La specie più frequente era il complesso *M. fortuitum* (8) seguito da *M. nonchromogenicum* (4) e dal complesso *M. avium* (4). Il metodo PRA ha identificato la terza variante di *M. fortuitum* in isolati nelle mucche. Questo risultato potrebbe significare l’esistenza del farcino bovino nella popolazione di mucche del Ciad poiché la terza variante di *M. fortuitum* non può essere differenziata con i metodi utilizzati in questo studio dal probabile agente patogeno *M. farcinogenes*. Non è stato possibile identificare la metà degli isolati NTM e consideriamo questo come una contaminazione dall’ambiente.
References

Corresponding author

Mailing address: Socinstrasse 57, Swiss Tropical Institute, CH 4002 Basel Switzerland. Phone: +41 61 2718139 Fax: +41 61 2718654, E-Mail: Markus.Hilty@unibas.ch

Received: 6 August 2005
Accepted: 15 September 2005