Recurrent fever as the only or predominant clinical sign in four dogs and one cat with congenital portosystemic vascular anomalies

Clinic for Small Animal Internal Medicine, University of Zurich, Switzerland.

Summary
Fever is not considered a typical clinical sign in animals with portosystemic vascular anomalies (PSVA). In a time period of 8 years, PSVA was diagnosed in 23 cases (20 dogs, 3 cats) at the Animal Hospital of the University of Zurich. Of these, recurrent fever was the only, the predominant or an early sign in 5 animals. Fever and associated unspecific clinical signs like lethargy, inappetence, and reluctance to move were present for weeks to months before the final diagnosis of PSVA was made. It was the lack of typical and well-known signs of PSVA that obscured and delayed the diagnosis. Therefore, PSVA should be included in the differential diagnosis of animals with fever of unknown origin (FUO).

Key words: fever – portosystemic shunt – dog – cat

Introduction
Recurrent fever is a common presenting complaint in small animal practice. The major causes of recurrent fever can be categorized into four groups: infectious, immune-mediated, neoplastic and miscellaneous disorders (e.g. drug reactions) (Lorenz, 1993). Fever is a clinical sign recognized with any type of liver failure. It is considered to be the result of decreased clearance of bacteria and/or bacterial endotoxins of intestinal origin by the hepatic Kupffer cells (Prytz et al., 1976). Fever appears to occur infrequently and is rarely mentioned in animals with PSVA (Ewing et al., 1974; Grevel et al., 1987; Center and Magne, 1990; Watson and Herrtage, 1998), and hence is not considered a typical sign. Several animals with confirmed PSVA were observed at our clinic, in which fever was the only or the predominant clinical sign, which obscured and delayed the diagnosis of PSVA. Hence, the goal of this paper is to document importance and prevalence of recurrent fever in animals with PSVA.

Animals, Materials and Methods
All medical records of dogs and cats diagnosed with a portosystemic vascular anomaly (PSVA) at our clinic between 1989 and 1997 were reviewed. A presumptive diagnosis of PSVA was made based on a combination of clinical signs, complete blood count, biochemical profile, urinalysis, elevated fasting and/or 2-hour postprandial serum bile acids, abnormal ammonia tolerance test and abdominal ultrasound. A definitive
diagnosis was made by demonstrating the vascular anomaly angiographically (mesenteric venopertography or cranial mesenteric arteriography), or during surgery. Ammonia was determined from heparinised blood immediately after collection and centrifugation using a dry chemistry system (Sterczer et al., 1999). Fasting ammonia concentrations >150 µmol/l were considered abnormal. When fasting values were <200 µmol/l an oral ammonia tolerance test was performed. Ammonium chloride (100mg/kg) was dissolved in 10 ml of chocolate milk and administered orally by syringe. The ammonia tolerance was considered abnormal, when plasma ammonia concentration was >200 µmol/l 30 minutes after oral challenge. Serum bile acids were determined enzymatically using a commercial test kit. Fasting values >15 µmol/l and postprandial values >25 µmol/l were considered abnormal.

Results

The medical records of 20 dogs and 3 cats with confirmed PSVA were evaluated. In dogs the median age was one year, with a range of four months to eight years. The cats were 4 months, 1 year, and 6 years old. Undulating fever was the predominant or an early clinical sign in 4 dogs and 1 cat, that are the focus of this paper and are described in detail below.

Case 1

A 6-year-old female spayed old English sheepdog was referred for further evaluation and treatment of recurrent fever and suspected septic shock. For the previous 4 weeks the dog had suffered recurrent episodes of fever above 40°C. Treatment with antibiotics had resulted in a transient clinical normalization. In the previous 2 years the dog had been repeatedly examined for episodes of nonspecific clinical signs including fever spikes and lethargy. On physical examination the dog was markedly depressed and had difficulties walking. The mucous membranes were hyperemic, and the rectal temperature was 40°C. On neurological examination the following abnormalities were noted: weakness in all 4 legs, proprioceptive deficits in the rear limbs, bilaterally decreased menace response and pain in the cervical spine. Based on the clinical presentation the suspicion of sepsis from an unidentified focus with possible involvement of the central nervous system (i.e., meningoencephalitis) was raised. On abdominal radiographs the liver appeared to be slightly reduced in size. Thoracic and cervical spinal radiographs as well as abdominal ultrasound were unremarkable. Pertinent laboratory abnormalities included mild microcytic regenerative anemia, decreased serum urea, hypoalbuminemia, mild hypocholesterolemia, marginally low potassium, and bacteriuria. Two blood cultures were negative, while E. coli was cultured from the urine. CSF-analysis was normal. Further diagnostic studies revealed markedly elevated fasting serum bile acids (369 µmol/l) and abnormal ammonia tolerance (76 → 460 µmol/l). Abdominal ultrasound was repeated and at this time an intrahepatic portosystemic shunt could be visualized. A venoportogram through a mesenteric vein was diagnostic for an intrahepatic portosystemic shunt. Histological examination of a liver biopsy revealed hepatic parenchymal atrophy manifested by an increased number of portal triads per microscopic field, and a decreased number of portal veins in portal triads, abnormalities consistent with a PSVA (Strombeck and Guilford, 1990). After partial ligation of the shunting vessel the dog remained clinically normal during a 18 months follow-up period.

Case 2

An 8-month-old male golden retriever had shown a chronic nonspecific illness with recurrent pyrexia and poor appetite of 3 months duration. Several treatments with antibiotics successfully resolved the pyrexia but failed to improve his appetite. The dog was referred when subcutaneous edema of the ventral abdomen and the limbs started to develop. Abnormalities noted on physical examination were an increased respiratory effort and a pendulous abdomen. The Edinburgh coma scale score was 12/15. Pertinent laboratory abnormalities were a moderately regenerative microcytic anemia, low serum urea, panhypoproteinemia and isosthenuric urine. Liver function testing revealed elevated fasting (59 µmol/l) and postprandial serum bile acids (74 µmol/l), as well as abnormal plasma ammonia and ammonia tolerance (204 → 325 µmol/l). Abdominal ultrasound showed an intrahepatic shunt vessel. A portal angiogram and histologic examination of a liver biopsy were diagnostic for a congenital intrahepatic shunt. The dog died 24 hours after surgery. A necropsy was performed including histological examination of heart, lungs, stomach, small and large intestines, kidneys, liver and brain. 200 ml of blood was found in the peritoneal space and a blood clot of 0.5 cm in size was located at the site of the ligated shunt vessel. Besides the histological finding of hypoplasia of the branches of the portal vein and hypoplasia of the liver, no other abnormalities were found.

a Vettest 8008®, Iddex Laboratories, Inc., Westbrook, USA

b Enzabile®, Nycomed Pharma AS, Oslo, Norway
Case 3

An 8-month-old male mixed-breed dog was referred with a history of chronic non-specific illness of several weeks duration, manifested by recurrent fever and lethargy. Each time clinical signs resolved after treatment with antibiotics. On physical examination the dog had a rectal temperature of 40.0°C and also showed propulsive walking, salvation, polydipsia and transient blindness. Pertinent laboratory abnormalities were microcytic nonregenerative anemia and low serum urea. Liver function testing revealed elevated fasting serum bile acids (70 µmol/l), as well as elevated plasma ammonia (429 µmol/l). Ultrasonographic examination showed an extrahepatic shunt. This shunt vessel was ligated. The dog died within 24 hours after surgery, and necropsy was performed. Besides a persistent ductus venosus with hypoplasia of liver, alveolar lung edema, congestion of the intestines and gastric ulcers were found.

Case 4

A 6-month-old male Hovawart with a history of recurrent fever (up to 40.5°C) and lethargy of a 2-month duration was presented for further evaluation. In the past 2 months fever regularly subsided with antibiotic treatment. The dog was referred when additional signs including polydipsia, anorexia and encephalopathy started to develop. On physical examination, the dog had an elevated rectal temperature of 39.7°C and was slightly depressed. Otherwise clinical examination was unremarkable. Pertinent laboratory abnormalities were microcytic nonregenerative anemia, panhypoproteinemia and low serum urea. Further diagnostic studies revealed markedly elevated fasting serum bile acids (156 µmol/l), as well as elevated plasma ammonia (429 µmol/l). Ultrasonographic examination showed an extrahepatic shunt. This shunt vessel was ligated. The dog died within 24 hours after surgery, and necropsy was performed. Besides a persistent ductus venosus with hypoplasia of liver, alveolar lung edema, congestion of the intestines and gastric ulcers were found.

Case 5

A 1-year-old female cat was referred for further evaluation of recurrent episodes of fever up to 40.9°C during a 3-month period, which was accompanied by lethargy. A suspicion of FIP had been raised based on a positive feline coronavirus titer of 1:400. On physical examination the cat was unremarkable. Pertinent laboratory abnormalities were microcytosis, low serum urea, hypokalemia, and few urinary urate crystals. Fasting serum bile acids were elevated (58 µmol/l) and plasma ammonia (350 µmol/l) as well as ammonia tolerance (632 µmol/l) were abnormal. A nonselective angiogram revealed an arteriovenous fistula and multiple extrahepatic shunts. Excision of the left lateral and left medial liver lobes were performed. Histological findings of the liver were consistent with a congenital PSVA. The cat remained clinically normal during a follow up period of 2 years.

Discussion

A history of recurrent fever was documented in 22 per cent of animals with PSVA in our study. In one dog and one cat, fever and associated signs such as lethargy and poor appetite were the only signs present. Both animals had episodes of pyrexia for 2 years (dog) and 3 months (cat), respectively. In the remaining three dogs recurrent fever had been present for weeks, before additional typical signs suggestive of PSVA developed or were recognized.

Differential diagnosis for fever of unknown origin (FUO) in the general age group and geographic area of our study include infectious (bacterial, viral, protozoal), neoplastic as well as immune-mediated causes. None of these etiologies of FUO were found in our cases. Case No 1 and No 5 remained clinically normal after ligation of the shunt vessel during a 6-month follow up period, respectively. In case No 4 the animal continued to be clinically normal for 6 months after ligation when fever recurred. An angiography at that time showed multiple new small shunt vessels. In these 3 cases, the cause-and-effect-relationship between fever and PSVA is convincing, as the fever disappeared after ligation of the shunting vessel. In the remaining 2 cases the final cause-and-effect-relationship could not be established, as the animals died soon after surgery. Clinical examination and diagnostic workup including necropsy did not reveal any evidence for another cause of the fever than the PSVA. It seems very likely that all possible causes bacterial agents were responsible for the fever as both dogs had responded repeatedly to antibiotic therapy. The fact that no focus of bacterial infection could be found, neither intra-vitam

Pedigree canine low protein/low phosphorus®, Waltham Inc., Leistershire, United Kingdom
nor post-mortem, supported the suspicion of bacteremia originating from the gastrointestinal tract to be responsible for the fever. In up to 30% of bacteremia in people, no focus can be found and the gastrointestinal tract is the suspected origin in these cases (Root and Jacobs, 1991).

Fever has been described with variable frequency in patients with PSVA. While some authors did not mention fever as a clinical sign in their patients, others include fever in the symptom list of patients with PSVA (Ewing et al., 1974; Grevel et al., 1987; Center and Magne, 1990; Watson and Herrtage, 1998). To the authors’ knowledge, PSVA is not a referenced differential diagnosis for FUO, either. In contrast, fever was the only, an early or the predominant finding in 5 of 23 animals with PSVA in our retrospective study. This unexpected higher prevalence compared to others may be explained in several ways. First, other authors diagnosed PSVA before fever developed. Second, at the moment of diagnosing PSVA, other clinical symptoms predominated and fever did not appear worth mentioning. Finally, at our hospital the index of suspicion for PSVA in animals with FUO may have been increased due to our previous experience.

The fever in patients with PSVA may be the result of bacteremia and/or endotoxemia. Bacteremia/endotoxemia is a recognized complication in patients with liver failure, and is thought to originate from the intestinal tract (Prytz et al., 1976; Liehr and Grun, 1979; Gans, 1985). The intestinal tract is the largest reservoir for gram-negative organisms, and endotoxins from gram-negative organisms commonly enter portal blood. In the healthy organism no endotoxemia results as these endotoxins are removed by the hepatic mononuclear phagocyte system (MPS). The MPS is the main clearance organ (Rutenberg et al., 1967) and 80%–90% is represented by the Kupffer cells in the liver and 10%–20% by the phagocyte system in spleen, bone marrow and lungs (Prytz et al., 1976; Gans, 1985; Jones and Summerfield, 1988). The Kupffer cell mass represents the largest accumulation of fixed macrophages in the body (Jones and Summerfield, 1988) and is able to capture and phagocyte more antigen than any other component of the MPS. In the case of severe liver disease, the capability of Kupffer cells to extract endotoxin from circulating blood is reduced and endotoxins appear in the systemic circulation. In the case of PSVA a large part of the portal blood is shunted around the liver into the systemic circulation bypassing the Kupffer cells (Liehr and Grun, 1979; Lumsden et al., 1988).

A significant reduction of MPS function has been documented in livers of dogs with congenital or acquired PSVA using 99mTc Sulfur colloid scintigraphy (Koblik and Hornof, 1995). Although there is a compensatory increase in the MPS system in other organs (spleen in cases of congenital, lungs in cases of acquired PSVA), the total MPS function was reduced compared to healthy dogs (Koblik and Hornof, 1995). Endotoxemia has been documented in people with multiple PSVA as well as in rats with experimental PSVA (Liehr et al., 1975; Tarao et al., 1977). In dogs, one study of experimental PSVA recently documented increased systemic endotoxin concentrations (Howe et al., 1997), whereas in another study of congenital PSVA no systemic endotoxemia could be found (Peterson et al., 1991). Pre-treatment with antibiotics can explain the latter results.

In conclusion, our retrospective case study indicates that fever may be a predominant or early clinical sign of congenital anomalies of the hepatic portal circulation, and PSVA should be included in the list of differential diagnoses of FUO. Hence, a simple liver function test such as postprandial bile acids is recommended to be performed as part of the workup in a case with FUO.
Recurrent fever in dogs and cats

References

Recurrent fever in dogs and cats

Corresponding author

Tony M. Glaus, Clinic for Small Animal Internal Medicine, University of Zurich, Wintertthurerstrasse 260, CH-8057 Zurich, Switzerland, fax: 0041 1 635 8920
e-mail: tglaus@vetclinics.unizh.ch

*Received for publication: 14 August 2002
Accepted in final form: 30 October 2002*